Studying Infall Towards 10 Class 0/I Protostars Using ALMA Data and FERIA Andrew Milne^{1, 2}, Dominique Seguara-Cox², Stella Offner²

¹Department of Physics and Astronomy, College of Liberal Arts and Sciences, The University of Iowa, Iowa City IA ²Department of Astronomy, College of Natural Sciences, University of Texas at Austin, Austin TX

Introduction

The youngest protostars—in the Class 0/I phase—are elusive to detect, as they are heavily shielded by the gas and dust that collapses to form them. As of now, only ~25 Class 0/I protostars have had their mass measured, each in individual studies, not a systematic characterization.

This summer I modeled infall and rotation towards 10 Class 0/I protostars. This resulted in the first sample of protostars with masses measured systematically, using multiple dynamical models.

Figure 1 shows a schematic of the star formation process (Pineda et al. 2022 and Segura-Cox et al. in prep).

Methods

- We use FERIA: Flat Envelope model with Rotation and Infall under Angular momentum conservation (Oya et al. 2022)
- We calculate the X² between model and observed data cubes
- Using X², we rank our models, and after pruning the data, we recover parameters of the observed disk and protostar

Figure 2 shows how FERIA makes image cubes, and uses parameters to model (Oya et al. 2022).

Figure 3 (above) shows our ALMA observations of $C^{18}O$ of Peremb-14, with ~150AU resolution. We highlight the results of this source in this poster (Kirkpatrick et al. in prep).

1000 800 600 8 400 200 1.51.0 e N 0.5 0.0

> Per-e Mass Cent Inner Outer

Figure 4 (below) shows a corner plot of the models. Parameters with yellower values on average better fit the observed data. These can distinguish the local minima and narrow in on accurate parameters.

Results

emb-14	Reported Value
5	$0.7 \pm 0.4 M_{Sun}$
rifugal Barrier Radius	60 ± 100 <i>AU</i>
r Disk Radius	30 ± 50 <i>AU</i>
r System Radius	550 ± 320 AU

Table 2 shows the reported values for Peremb-14 derived from our methods.

- values
- consistent with Kirkpatrick et al. in prep's result of 0.67 M_{Sun} (which used a simpler method) constrained. Higher resolution data may be needed
- Our reported mass value of 0.7 \pm 0.4 M_{Sun} is • At this resolution, disk radii are not well to further constrain disk radii parameters

Figures and Models of the Class 0 Protostar Per-emb-14

Department of Physics and Astronomy

ored	•
Interval	
0.1 <i>M_{Sun}</i>	
100 <i>AU</i>	•
100 <i>AU</i>	•

- 50*AU*
- We conducted a grid search using FERIA through protostellar mass and disk characteristic radii
- ~5000 models were generated and analyzed
- X² comparisons were plotted using corner plots These were used to ensure we had well sampled the parameter-space, and search for trends in the model grids

Figure 5a, 5b, and 5c (above) show our modeled Position-Velocity diagrams. We explore 3 scenarios: A Keplerian only model, a Infalling Rotating Envelope only model, and a combination of the 2. Color represents observed $C^{18}O$ data from a slice through the image cube along the long axis of the disk. Refer to Figure 3. Contours represent the best model for each scenario. All 3 scenarios tend toward a similar morphology.

Conclusion

• Using this method, mass for protostars can be well estimated, keeping within the range of known

Acknowledgments

This work is supported by NSF REU grant AST-2244278 (PI: Jogee). Segura-Cox is supported by NSF AAPF award AST-Offner is 2102405. supported by NSF AAG-2107942.

